Papers
Topics
Authors
Recent
Search
2000 character limit reached

Gradient Coding with Dynamic Clustering for Straggler Mitigation

Published 3 Nov 2020 in cs.IT, cs.DC, cs.LG, eess.SP, and math.IT | (2011.01922v1)

Abstract: In distributed synchronous gradient descent (GD) the main performance bottleneck for the per-iteration completion time is the slowest \textit{straggling} workers. To speed up GD iterations in the presence of stragglers, coded distributed computation techniques are implemented by assigning redundant computations to workers. In this paper, we propose a novel gradient coding (GC) scheme that utilizes dynamic clustering, denoted by GC-DC, to speed up the gradient calculation. Under time-correlated straggling behavior, GC-DC aims at regulating the number of straggling workers in each cluster based on the straggler behavior in the previous iteration. We numerically show that GC-DC provides significant improvements in the average completion time (of each iteration) with no increase in the communication load compared to the original GC scheme.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.