Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Exploring DeshuffleGANs in Self-Supervised Generative Adversarial Networks (2011.01730v2)

Published 3 Nov 2020 in cs.CV

Abstract: Generative Adversarial Networks (GANs) have become the most used networks towards solving the problem of image generation. Self-supervised GANs are later proposed to avoid the catastrophic forgetting of the discriminator and to improve the image generation quality without needing the class labels. However, the generalizability of the self-supervision tasks on different GAN architectures is not studied before. To that end, we extensively analyze the contribution of a previously proposed self-supervision task, deshuffling of the DeshuffleGANs in the generalizability context. We assign the deshuffling task to two different GAN discriminators and study the effects of the task on both architectures. We extend the evaluations compared to the previously proposed DeshuffleGANs on various datasets. We show that the DeshuffleGAN obtains the best FID results for several datasets compared to the other self-supervised GANs. Furthermore, we compare the deshuffling with the rotation prediction that is firstly deployed to the GAN training and demonstrate that its contribution exceeds the rotation prediction. We design the conditional DeshuffleGAN called cDeshuffleGAN to evaluate the quality of the learnt representations. Lastly, we show the contribution of the self-supervision tasks to the GAN training on the loss landscape and present that the effects of these tasks may not be cooperative to the adversarial training in some settings. Our code can be found at https://github.com/gulcinbaykal/DeshuffleGAN.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com