Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Improved End-to-End Dysarthric Speech Recognition via Meta-learning Based Model Re-initialization (2011.01686v1)

Published 3 Nov 2020 in eess.AS

Abstract: Dysarthric speech recognition is a challenging task as dysarthric data is limited and its acoustics deviate significantly from normal speech. Model-based speaker adaptation is a promising method by using the limited dysarthric speech to fine-tune a base model that has been pre-trained from large amounts of normal speech to obtain speaker-dependent models. However, statistic distribution mismatches between the normal and dysarthric speech data limit the adaptation performance of the base model. To address this problem, we propose to re-initialize the base model via meta-learning to obtain a better model initialization. Specifically, we focus on end-to-end models and extend the model-agnostic meta learning (MAML) and Reptile algorithms to meta update the base model by repeatedly simulating adaptation to different dysarthric speakers. As a result, the re-initialized model acquires dysarthric speech knowledge and learns how to perform fast adaptation to unseen dysarthric speakers with improved performance. Experimental results on UASpeech dataset show that the best model with proposed methods achieves 54.2% and 7.6% relative word error rate reduction compared with the base model without finetuning and the model directly fine-tuned from the base model, respectively, and it is comparable with the state-of-the-art hybrid DNN-HMM model.

Citations (38)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.