Papers
Topics
Authors
Recent
Search
2000 character limit reached

Dynamic latency speech recognition with asynchronous revision

Published 3 Nov 2020 in eess.AS and cs.SD | (2011.01570v1)

Abstract: In this work we propose an inference technique, asynchronous revision, to unify streaming and non-streaming speech recognition models. Specifically, we achieve dynamic latency with only one model by using arbitrary right context during inference. The model is composed of a stack of convolutional layers for audio encoding. In inference stage, the history states of encoder and decoder can be asynchronously revised to trade off between the latency and the accuracy of the model. To alleviate training and inference mismatch, we propose a training technique, segment cropping, which randomly splits input utterances into several segments with forward connections. This allows us to have dynamic latency speech recognition results with large improvements in accuracy. Experiments show that our dynamic latency model with asynchronous revision gives 8\%-14\% relative improvements over the streaming models.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.