Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 42 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Episodic Linear Quadratic Regulators with Low-rank Transitions (2011.01568v2)

Published 3 Nov 2020 in cs.LG

Abstract: Linear Quadratic Regulators (LQR) achieve enormous successful real-world applications. Very recently, people have been focusing on efficient learning algorithms for LQRs when their dynamics are unknown. Existing results effectively learn to control the unknown system using number of episodes depending polynomially on the system parameters, including the ambient dimension of the states. These traditional approaches, however, become inefficient in common scenarios, e.g., when the states are high-resolution images. In this paper, we propose an algorithm that utilizes the intrinsic system low-rank structure for efficient learning. For problems of rank-$m$, our algorithm achieves a $K$-episode regret bound of order $\widetilde{O}(m{3/2} K{1/2})$. Consequently, the sample complexity of our algorithm only depends on the rank, $m$, rather than the ambient dimension, $d$, which can be orders-of-magnitude larger.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.