Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Convergence of Graph Laplacian with kNN Self-tuned Kernels (2011.01479v2)

Published 3 Nov 2020 in math.ST, cs.LG, stat.ML, and stat.TH

Abstract: Kernelized Gram matrix $W$ constructed from data points ${x_i}{i=1}N$ as $W{ij}= k_0( \frac{ | x_i - x_j |2} {\sigma2} )$ is widely used in graph-based geometric data analysis and unsupervised learning. An important question is how to choose the kernel bandwidth $\sigma$, and a common practice called self-tuned kernel adaptively sets a $\sigma_i$ at each point $x_i$ by the $k$-nearest neighbor (kNN) distance. When $x_i$'s are sampled from a $d$-dimensional manifold embedded in a possibly high-dimensional space, unlike with fixed-bandwidth kernels, theoretical results of graph Laplacian convergence with self-tuned kernels have been incomplete. This paper proves the convergence of graph Laplacian operator $L_N$ to manifold (weighted-)Laplacian for a new family of kNN self-tuned kernels $W{(\alpha)}_{ij} = k_0( \frac{ | x_i - x_j |2}{ \epsilon \hat{\rho}(x_i) \hat{\rho}(x_j)})/\hat{\rho}(x_i)\alpha \hat{\rho}(x_j)\alpha$, where $\hat{\rho}$ is the estimated bandwidth function {by kNN}, and the limiting operator is also parametrized by $\alpha$. When $\alpha = 1$, the limiting operator is the weighted manifold Laplacian $\Delta_p$. Specifically, we prove the point-wise convergence of $L_N f $ and convergence of the graph Dirichlet form with rates. Our analysis is based on first establishing a $C0$ consistency for $\hat{\rho}$ which bounds the relative estimation error $|\hat{\rho} - \bar{\rho}|/\bar{\rho}$ uniformly with high probability, where $\bar{\rho} = p{-1/d}$, and $p$ is the data density function. Our theoretical results reveal the advantage of self-tuned kernel over fixed-bandwidth kernel via smaller variance error in low-density regions. In the algorithm, no prior knowledge of $d$ or data density is needed. The theoretical results are supported by numerical experiments on simulated data and hand-written digit image data.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.