Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Participation in TREC 2020 COVID Track Using Continuous Active Learning (2011.01453v1)

Published 3 Nov 2020 in cs.IR

Abstract: We describe our participation in all five rounds of the TREC 2020 COVID Track (TREC-COVID). The goal of TREC-COVID is to contribute to the response to the COVID-19 pandemic by identifying answers to many pressing questions and building infrastructure to improve search systems [8]. All five rounds of this Track challenged participants to perform a classic ad-hoc search task on the new data collection CORD-19. Our solution addressed this challenge by applying the Continuous Active Learning model (CAL) and its variations. Our results showed us to be amongst the top scoring manual runs and we remained competitive within all categories of submissions.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.