Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Recyclable Waste Identification Using CNN Image Recognition and Gaussian Clustering (2011.01353v1)

Published 2 Nov 2020 in cs.CV and cs.AI

Abstract: Waste recycling is an important way of saving energy and materials in the production process. In general cases recyclable objects are mixed with unrecyclable objects, which raises a need for identification and classification. This paper proposes a convolutional neural network (CNN) model to complete both tasks. The model uses transfer learning from a pretrained Resnet-50 CNN to complete feature extraction. A subsequent fully connected layer for classification was trained on the augmented TrashNet dataset [1]. In the application, sliding-window is used for image segmentation in the pre-classification stage. In the post-classification stage, the labelled sample points are integrated with Gaussian Clustering to locate the object. The resulting model has achieved an overall detection rate of 48.4% in simulation and final classification accuracy of 92.4%.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.