Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Toward Mutual Trust Modeling in Human-Robot Collaboration (2011.01056v1)

Published 2 Nov 2020 in cs.RO and cs.HC

Abstract: The recent revolution of intelligent systems made it possible for robots and autonomous systems to work alongside humans, collaborating with them and supporting them in many domains. It is undeniable that this interaction can have huge benefits for humans if it is designed properly. However, collaboration with humans requires a high level of cognition and social capabilities in order to gain humans acceptance. In all-human teams, mutual trust is the engine for successful collaboration. This applies to human-robot collaboration as well. Trust in this interaction controls over- and under-reliance. It can also mitigate some risk. Therefore, an appropriate trust level is essential for this new form of teamwork. Most research in this area has looked at trust of humans in machines, neglecting the mutuality of trust among collaboration partners. In this paper, we propose a trust model that incorporates this mutuality captures trust levels of both the human and the robot in real-time, so that robot can base actions on this, allowing for smoother, more natural interactions. This increases the human autonomy since the human does not need to monitor the robot behavior all the time.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.