Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Evaluation of Siamese Networks for Semantic Code Search (2011.01043v1)

Published 12 Oct 2020 in cs.SE, cs.AI, and cs.CL

Abstract: With the increase in the number of open repositories and discussion forums, the use of natural language for semantic code search has become increasingly common. The accuracy of the results returned by such systems, however, can be low due to 1) limited shared vocabulary between code and user query and 2) inadequate semantic understanding of user query and its relation to code syntax. Siamese networks are well suited to learning such joint relations between data, but have not been explored in the context of code search. In this work, we evaluate Siamese networks for this task by exploring multiple extraction network architectures. These networks independently process code and text descriptions before passing them to a Siamese network to learn embeddings in a common space. We experiment on two different datasets and discover that Siamese networks can act as strong regularizers on networks that extract rich information from code and text, which in turn helps achieve impressive performance on code search beating previous baselines on $2$ programming languages. We also analyze the embedding space of these networks and provide directions to fully leverage the power of Siamese networks for semantic code search.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.