Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Multimodal Continuous Emotion Recognition using Deep Multi-Task Learning with Correlation Loss (2011.00876v1)

Published 2 Nov 2020 in cs.HC

Abstract: In this study, we focus on continuous emotion recognition using body motion and speech signals to estimate Activation, Valence, and Dominance (AVD) attributes. Semi-End-To-End network architecture is proposed where both extracted features and raw signals are fed, and this network is trained using multi-task learning (MTL) rather than the state-of-the-art single task learning (STL). Furthermore, correlation losses, Concordance Correlation Coefficient (CCC) and Pearson Correlation Coefficient (PCC), are used as an optimization objective during the training. Experiments are conducted on CreativeIT and RECOLA database, and evaluations are performed using the CCC metric. To highlight the effect of MTL, correlation losses and multi-modality, we respectively compare the performance of MTL against STL, CCC loss against root mean square error (MSE) loss and, PCC loss, multi-modality against single modality. We observe significant performance improvements with MTL training over STL, especially for estimation of the valence. Furthermore, the CCC loss achieves more than 7% CCC improvements on CreativeIT, and 13% improvements on RECOLA against MSE loss.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.