Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Multitask Learning and Joint Optimization for Transformer-RNN-Transducer Speech Recognition (2011.00771v1)

Published 2 Nov 2020 in cs.LG, cs.SD, and eess.AS

Abstract: Recently, several types of end-to-end speech recognition methods named transformer-transducer were introduced. According to those kinds of methods, transcription networks are generally modeled by transformer-based neural networks, while prediction networks could be modeled by either transformers or recurrent neural networks (RNN). This paper explores multitask learning, joint optimization, and joint decoding methods for transformer-RNN-transducer systems. Our proposed methods have the main advantage in that the model can maintain information on the large text corpus. We prove their effectiveness by performing experiments utilizing the well-known ESPNET toolkit for the widely used Librispeech datasets. We also show that the proposed methods can reduce word error rate (WER) by 16.6 % and 13.3 % for test-clean and test-other datasets, respectively, without changing the overall model structure nor exploiting an external LM.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)