Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Influence Patterns for Explaining Information Flow in BERT (2011.00740v3)

Published 2 Nov 2020 in cs.CL

Abstract: While attention is all you need may be proving true, we do not know why: attention-based transformer models such as BERT are superior but how information flows from input tokens to output predictions are unclear. We introduce influence patterns, abstractions of sets of paths through a transformer model. Patterns quantify and localize the flow of information to paths passing through a sequence of model nodes. Experimentally, we find that significant portion of information flow in BERT goes through skip connections instead of attention heads. We further show that consistency of patterns across instances is an indicator of BERT's performance. Finally, We demonstrate that patterns account for far more model performance than previous attention-based and layer-based methods.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.