Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Road Damage Detection using Deep Ensemble Learning (2011.00728v1)

Published 30 Oct 2020 in cs.CV and cs.LG

Abstract: Road damage detection is critical for the maintenance of a road, which traditionally has been performed using expensive high-performance sensors. With the recent advances in technology, especially in computer vision, it is now possible to detect and categorize different types of road damages, which can facilitate efficient maintenance and resource management. In this work, we present an ensemble model for efficient detection and classification of road damages, which we have submitted to the IEEE BigData Cup Challenge 2020. Our solution utilizes a state-of-the-art object detector known as You Only Look Once (YOLO-v4), which is trained on images of various types of road damages from Czech, Japan and India. Our ensemble approach was extensively tested with several different model versions and it was able to achieve an F1 score of 0.628 on the test 1 dataset and 0.6358 on the test 2 dataset.

Citations (48)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.