Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Grasping in the Dark: Zero-Shot Object Grasping Using Tactile Feedback (2011.00712v2)

Published 2 Nov 2020 in cs.RO

Abstract: Grasping and manipulating a wide variety of objects is a fundamental skill that would determine the success and wide spread adaptation of robots in homes. Several end-effector designs for robust manipulation have been proposed but they mostly work when provided with prior information about the objects or equipped with external sensors for estimating object shape or size. Such approaches are limited to many-shot or unknown objects and are prone to estimation errors from external estimation systems. We propose an approach to grasp and manipulate previously unseen or zero-shot objects: the objects without any prior of their shape, size, material and weight properties, using only feedback from tactile sensors which is contrary to the state-of-the-art. Such an approach provides robust manipulation of objects either when the object model is not known or when it is estimated incorrectly from an external system. Our approach is inspired by the ideology of how animals or humans manipulate objects, i.e., by using feedback from their skin. Our grasping and manipulation revolves around the simple notion that objects slip if not grasped stably. This slippage can be detected and counteracted for a robust grasp that is agnostic to the type, shape, size, material and weight of the object. At the crux of our approach is a novel tactile feedback based controller that detects and compensates for slip during grasp. We successfully evaluate and demonstrate our proposed approach on many real world experiments using the Shadow Dexterous Hand equipped with BioTac SP tactile sensors for different object shapes, sizes, weights and materials. We obtain an overall success rate of 73.5%

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.