Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Similarity Between Points in Metric Measure Spaces (2011.00616v1)

Published 1 Nov 2020 in cs.DM

Abstract: This paper is about similarity between objects that can be represented as points in metric measure spaces. A metric measure space is a metric space that is also equipped with a measure. For example, a network with distances between its nodes and weights assigned to its nodes is a metric measure space. Given points x and y in different metric measure spaces or in the same space, how similar are they? A well known approach is to consider x and y similar if their neighborhoods are similar. For metric measure spaces, similarity between neighborhoods is well captured by the Gromov-Hausdorff-Prokhorov distance, but it is NP-hard to compute this distance even in quite simple cases. We propose a tractable alternative: the radial distribution distance between the neighborhoods of x and y. The similarity measure based on the radial distribution distance is coarser than the similarity based on the Gromov-Hausdorff-Prokhorov distance but much easier to compute.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.