Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Sample Efficient Training in Multi-Agent Adversarial Games with Limited Teammate Communication (2011.00424v1)

Published 1 Nov 2020 in cs.LG and cs.MA

Abstract: We describe our solution approach for Pommerman TeamRadio, a competition environment associated with NeurIPS 2019. The defining feature of our algorithm is achieving sample efficiency within a restrictive computational budget while beating the previous years learning agents. The proposed algorithm (i) uses imitation learning to seed the policy, (ii) explicitly defines the communication protocol between the two teammates, (iii) shapes the reward to provide a richer feedback signal to each agent during training and (iv) uses masking for catastrophic bad actions. We describe extensive tests against baselines, including those from the 2019 competition leaderboard, and also a specific investigation of the learned policy and the effect of each modification on performance. We show that the proposed approach is able to achieve competitive performance within half a million games of training, significantly faster than other studies in the literature.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.