Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Deep generative LDA (2010.16138v1)

Published 30 Oct 2020 in cs.LG and stat.ML

Abstract: Linear discriminant analysis (LDA) is a popular tool for classification and dimension reduction. Limited by its linear form and the underlying Gaussian assumption, however, LDA is not applicable in situations where the data distribution is complex. Recently, we proposed a discriminative normalization flow (DNF) model. In this study, we reinterpret DNF as a deep generative LDA model, and study its properties in representing complex data. We conducted a simulation experiment and a speaker recognition experiment. The results show that DNF and its subspace version are much more powerful than the conventional LDA in modeling complex data and retrieving low-dimensional representations.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)