Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

T-vectors: Weakly Supervised Speaker Identification Using Hierarchical Transformer Model (2010.16071v1)

Published 29 Oct 2020 in cs.SD, cs.CL, cs.LG, and eess.AS

Abstract: Identifying multiple speakers without knowing where a speaker's voice is in a recording is a challenging task. This paper proposes a hierarchical network with transformer encoders and memory mechanism to address this problem. The proposed model contains a frame-level encoder and segment-level encoder, both of them make use of the transformer encoder block. The multi-head attention mechanism in the transformer structure could better capture different speaker properties when the input utterance contains multiple speakers. The memory mechanism used in the frame-level encoders can build a recurrent connection that better capture long-term speaker features. The experiments are conducted on artificial datasets based on the Switchboard Cellular part1 (SWBC) and Voxceleb1 datasets. In different data construction scenarios (Concat and Overlap), the proposed model shows better performance comparaing with four strong baselines, reaching 13.3% and 10.5% relative improvement compared with H-vectors and S-vectors. The use of memory mechanism could reach 10.6% and 7.7% relative improvement compared with not using memory mechanism.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.