Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised Embedding of Hierarchical Structure in Euclidean Space (2010.16055v1)

Published 30 Oct 2020 in cs.LG and stat.ML

Abstract: Deep embedding methods have influenced many areas of unsupervised learning. However, the best methods for learning hierarchical structure use non-Euclidean representations, whereas Euclidean geometry underlies the theory behind many hierarchical clustering algorithms. To bridge the gap between these two areas, we consider learning a non-linear embedding of data into Euclidean space as a way to improve the hierarchical clustering produced by agglomerative algorithms. To learn the embedding, we revisit using a variational autoencoder with a Gaussian mixture prior, and we show that rescaling the latent space embedding and then applying Ward's linkage-based algorithm leads to improved results for both dendrogram purity and the Moseley-Wang cost function. Finally, we complement our empirical results with a theoretical explanation of the success of this approach. We study a synthetic model of the embedded vectors and prove that Ward's method exactly recovers the planted hierarchical clustering with high probability.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jinyu Zhao (23 papers)
  2. Yi Hao (10 papers)
  3. Cyrus Rashtchian (31 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.