Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Bayes-Adaptive Deep Model-Based Policy Optimisation (2010.15948v3)

Published 29 Oct 2020 in cs.RO and cs.LG

Abstract: We introduce a Bayesian (deep) model-based reinforcement learning method (RoMBRL) that can capture model uncertainty to achieve sample-efficient policy optimisation. We propose to formulate the model-based policy optimisation problem as a Bayes-adaptive Markov decision process (BAMDP). RoMBRL maintains model uncertainty via belief distributions through a deep Bayesian neural network whose samples are generated via stochastic gradient Hamiltonian Monte Carlo. Uncertainty is propagated through simulations controlled by sampled models and history-based policies. As beliefs are encoded in visited histories, we propose a history-based policy network that can be end-to-end trained to generalise across history space and will be trained using recurrent Trust-Region Policy Optimisation. We show that RoMBRL outperforms existing approaches on many challenging control benchmark tasks in terms of sample complexity and task performance. The source code of this paper is also publicly available on https://github.com/thobotics/RoMBRL.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)