Papers
Topics
Authors
Recent
2000 character limit reached

Retrieve, Program, Repeat: Complex Knowledge Base Question Answering via Alternate Meta-learning (2010.15875v1)

Published 29 Oct 2020 in cs.AI and cs.CL

Abstract: A compelling approach to complex question answering is to convert the question to a sequence of actions, which can then be executed on the knowledge base to yield the answer, aka the programmer-interpreter approach. Use similar training questions to the test question, meta-learning enables the programmer to adapt to unseen questions to tackle potential distributional biases quickly. However, this comes at the cost of manually labeling similar questions to learn a retrieval model, which is tedious and expensive. In this paper, we present a novel method that automatically learns a retrieval model alternately with the programmer from weak supervision, i.e., the system's performance with respect to the produced answers. To the best of our knowledge, this is the first attempt to train the retrieval model with the programmer jointly. Our system leads to state-of-the-art performance on a large-scale task for complex question answering over knowledge bases. We have released our code at https://github.com/DevinJake/MARL.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.