Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Single-Loop Smoothed Gradient Descent-Ascent Algorithm for Nonconvex-Concave Min-Max Problems (2010.15768v3)

Published 29 Oct 2020 in math.OC and cs.LG

Abstract: Nonconvex-concave min-max problem arises in many machine learning applications including minimizing a pointwise maximum of a set of nonconvex functions and robust adversarial training of neural networks. A popular approach to solve this problem is the gradient descent-ascent (GDA) algorithm which unfortunately can exhibit oscillation in case of nonconvexity. In this paper, we introduce a "smoothing" scheme which can be combined with GDA to stabilize the oscillation and ensure convergence to a stationary solution. We prove that the stabilized GDA algorithm can achieve an $O(1/\epsilon2)$ iteration complexity for minimizing the pointwise maximum of a finite collection of nonconvex functions. Moreover, the smoothed GDA algorithm achieves an $O(1/\epsilon4)$ iteration complexity for general nonconvex-concave problems. Extensions of this stabilized GDA algorithm to multi-block cases are presented. To the best of our knowledge, this is the first algorithm to achieve $O(1/\epsilon2)$ for a class of nonconvex-concave problem. We illustrate the practical efficiency of the stabilized GDA algorithm on robust training.

Citations (86)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.