Learning interaction kernels in mean-field equations of 1st-order systems of interacting particles (2010.15694v1)
Abstract: We introduce a nonparametric algorithm to learn interaction kernels of mean-field equations for 1st-order systems of interacting particles. The data consist of discrete space-time observations of the solution. By least squares with regularization, the algorithm learns the kernel on data-adaptive hypothesis spaces efficiently. A key ingredient is a probabilistic error functional derived from the likelihood of the mean-field equation's diffusion process. The estimator converges, in a reproducing kernel Hilbert space and an L2 space under an identifiability condition, at a rate optimal in the sense that it equals the numerical integrator's order. We demonstrate our algorithm on three typical examples: the opinion dynamics with a piecewise linear kernel, the granular media model with a quadratic kernel, and the aggregation-diffusion with a repulsive-attractive kernel.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.