Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A brief overview of swarm intelligence-based algorithms for numerical association rule mining (2010.15524v1)

Published 29 Oct 2020 in cs.NE

Abstract: Numerical Association Rule Mining is a popular variant of Association Rule Mining, where numerical attributes are handled without discretization. This means that the algorithms for dealing with this problem can operate directly, not only with categorical, but also with numerical attributes. Until recently, a big portion of these algorithms were based on a stochastic nature-inspired population-based paradigm. As a result, evolutionary and swarm intelligence-based algorithms showed big efficiency for dealing with the problem. In line with this, the main mission of this chapter is to make a historical overview of swarm intelligence-based algorithms for Numerical Association Rule Mining, as well as to present the main features of these algorithms for the observed problem. A taxonomy of the algorithms was proposed on the basis of the applied features found in this overview. Challenges, waiting in the future, finish this paper.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.