Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Minimizing Robot Navigation-Graph For Position-Based Predictability By Humans (2010.15255v2)

Published 28 Oct 2020 in cs.AI

Abstract: In situations where humans and robots are moving in the same space whilst performing their own tasks, predictable paths taken by mobile robots can not only make the environment feel safer, but humans can also help with the navigation in the space by avoiding path conflicts or not blocking the way. So predictable paths become vital. The cognitive effort for the human to predict the robot's path becomes untenable as the number of robots increases. As the number of humans increase, it also makes it harder for the robots to move while considering the motion of multiple humans. Additionally, if new people are entering the space -- like in restaurants, banks, and hospitals -- they would have less familiarity with the trajectories typically taken by the robots; this further increases the needs for predictable robot motion along paths. With this in mind, we propose to minimize the navigation-graph of the robot for position-based predictability, which is predictability from just the current position of the robot. This is important since the human cannot be expected to keep track of the goals and prior actions of the robot in addition to doing their own tasks. In this paper, we define measures for position-based predictability, then present and evaluate a hill-climbing algorithm to minimize the navigation-graph (directed graph) of robot motion. This is followed by the results of our human-subject experiments which support our proposed methodology.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.