Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

A fast and scalable computational framework for large-scale and high-dimensional Bayesian optimal experimental design (2010.15196v1)

Published 28 Oct 2020 in math.NA, cs.CE, and cs.NA

Abstract: We develop a fast and scalable computational framework to solve large-scale and high-dimensional Bayesian optimal experimental design problems. In particular, we consider the problem of optimal observation sensor placement for Bayesian inference of high-dimensional parameters governed by partial differential equations (PDEs), which is formulated as an optimization problem that seeks to maximize an expected information gain (EIG). Such optimization problems are particularly challenging due to the curse of dimensionality for high-dimensional parameters and the expensive solution of large-scale PDEs. To address these challenges, we exploit two essential properties of such problems: the low-rank structure of the Jacobian of the parameter-to-observable map to extract the intrinsically low-dimensional data-informed subspace, and the high correlation of the approximate EIGs by a series of approximations to reduce the number of PDE solves. We propose an efficient offline-online decomposition for the optimization problem: an offline stage of computing all the quantities that require a limited number of PDE solves independent of parameter and data dimensions, and an online stage of optimizing sensor placement that does not require any PDE solve. For the online optimization, we propose a swapping greedy algorithm that first construct an initial set of sensors using leverage scores and then swap the chosen sensors with other candidates until certain convergence criteria are met. We demonstrate the efficiency and scalability of the proposed computational framework by a linear inverse problem of inferring the initial condition for an advection-diffusion equation, and a nonlinear inverse problem of inferring the diffusion coefficient of a log-normal diffusion equation, with both the parameter and data dimensions ranging from a few tens to a few thousands.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.