Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Gender Bias in Depression Detection Using Audio Features (2010.15120v3)

Published 28 Oct 2020 in cs.SD, cs.LG, eess.AS, and eess.SP

Abstract: Depression is a large-scale mental health problem and a challenging area for machine learning researchers in detection of depression. Datasets such as Distress Analysis Interview Corpus - Wizard of Oz (DAIC-WOZ) have been created to aid research in this area. However, on top of the challenges inherent in accurately detecting depression, biases in datasets may result in skewed classification performance. In this paper we examine gender bias in the DAIC-WOZ dataset. We show that gender biases in DAIC-WOZ can lead to an overreporting of performance. By different concepts from Fair Machine Learning, such as data re-distribution, and using raw audio features, we can mitigate against the harmful effects of bias.

Citations (47)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.