Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Road Damage Detection and Classification with Detectron2 and Faster R-CNN (2010.15021v1)

Published 28 Oct 2020 in cs.CV

Abstract: The road is vital for many aspects of life, and road maintenance is crucial for human safety. One of the critical tasks to allow timely repair of road damages is to quickly and efficiently detect and classify them. This work details the strategies and experiments evaluated for these tasks. Specifically, we evaluate Detectron2's implementation of Faster R-CNN using different base models and configurations. We also experiment with these approaches using the Global Road Damage Detection Challenge 2020, A Track in the IEEE Big Data 2020 Big Data Cup Challenge dataset. The results show that the X101-FPN base model for Faster R-CNN with Detectron2's default configurations are efficient and general enough to be transferable to different countries in this challenge. This approach results in F1 scores of 51.0% and 51.4% for the test1 and test2 sets of the challenge, respectively. Though the visualizations show good prediction results, the F1 scores are low. Therefore, we also evaluate the prediction results against the existing annotations and discover some discrepancies. Thus, we also suggest strategies to improve the labeling process for this dataset.

Citations (71)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.