Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 166 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

One In A Hundred: Select The Best Predicted Sequence from Numerous Candidates for Streaming Speech Recognition (2010.14791v3)

Published 28 Oct 2020 in eess.AS

Abstract: The RNN-Transducers and improved attention-based encoder-decoder models are widely applied to streaming speech recognition. Compared with these two end-to-end models, the CTC model is more efficient in training and inference. However, it cannot capture the linguistic dependencies between the output tokens. Inspired by the success of two-pass end-to-end models, we introduce a transformer decoder and the two-stage inference method into the streaming CTC model. During inference, the CTC decoder first generates many candidates in a streaming fashion. Then the transformer decoder selects the best candidate based on the corresponding acoustic encoded states. The second-stage transformer decoder can be regarded as a conditional LLM. We assume that a large enough number and enough diversity of candidates generated in the first stage can compensate the CTC model for the lack of LLMing ability. All the experiments are conducted on a Chinese Mandarin dataset AISHELL-1. The results show that our proposed model can implement streaming decoding in a fast and straightforward way. Our model can achieve up to a 20% reduction in the character error rate than the baseline CTC model. In addition, our model can also perform non-streaming inference with only a little performance degradation.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube