Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

DNA: Differentiable Network-Accelerator Co-Search (2010.14778v2)

Published 28 Oct 2020 in cs.LG

Abstract: Powerful yet complex deep neural networks (DNNs) have fueled a booming demand for efficient DNN solutions to bring DNN-powered intelligence into numerous applications. Jointly optimizing the networks and their accelerators are promising in providing optimal performance. However, the great potential of such solutions have yet to be unleashed due to the challenge of simultaneously exploring the vast and entangled, yet different design spaces of the networks and their accelerators. To this end, we propose DNA, a Differentiable Network-Accelerator co-search framework for automatically searching for matched networks and accelerators to maximize both the task accuracy and acceleration efficiency. Specifically, DNA integrates two enablers: (1) a generic design space for DNN accelerators that is applicable to both FPGA- and ASIC-based DNN accelerators and compatible with DNN frameworks such as PyTorch to enable algorithmic exploration for more efficient DNNs and their accelerators; and (2) a joint DNN network and accelerator co-search algorithm that enables simultaneously searching for optimal DNN structures and their accelerators' micro-architectures and mapping methods to maximize both the task accuracy and acceleration efficiency. Experiments and ablation studies based on FPGA measurements and ASIC synthesis show that the matched networks and accelerators generated by DNA consistently outperform state-of-the-art (SOTA) DNNs and DNN accelerators (e.g., 3.04x better FPS with a 5.46% higher accuracy on ImageNet), while requiring notably reduced search time (up to 1234.3x) over SOTA co-exploration methods, when evaluated over ten SOTA baselines on three datasets. All codes will be released upon acceptance.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.