Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Faster Differentially Private Samplers via Rényi Divergence Analysis of Discretized Langevin MCMC (2010.14658v2)

Published 27 Oct 2020 in cs.LG, cs.CR, cs.DS, and math.PR

Abstract: Various differentially private algorithms instantiate the exponential mechanism, and require sampling from the distribution $\exp(-f)$ for a suitable function $f$. When the domain of the distribution is high-dimensional, this sampling can be computationally challenging. Using heuristic sampling schemes such as Gibbs sampling does not necessarily lead to provable privacy. When $f$ is convex, techniques from log-concave sampling lead to polynomial-time algorithms, albeit with large polynomials. Langevin dynamics-based algorithms offer much faster alternatives under some distance measures such as statistical distance. In this work, we establish rapid convergence for these algorithms under distance measures more suitable for differential privacy. For smooth, strongly-convex $f$, we give the first results proving convergence in R\'enyi divergence. This gives us fast differentially private algorithms for such $f$. Our techniques and simple and generic and apply also to underdamped Langevin dynamics.

Citations (39)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com