Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Adversarial Dueling Bandits (2010.14563v1)

Published 27 Oct 2020 in cs.LG and stat.ML

Abstract: We introduce the problem of regret minimization in Adversarial Dueling Bandits. As in classic Dueling Bandits, the learner has to repeatedly choose a pair of items and observe only a relative binary `win-loss' feedback for this pair, but here this feedback is generated from an arbitrary preference matrix, possibly chosen adversarially. Our main result is an algorithm whose $T$-round regret compared to the \emph{Borda-winner} from a set of $K$ items is $\tilde{O}(K{1/3}T{2/3})$, as well as a matching $\Omega(K{1/3}T{2/3})$ lower bound. We also prove a similar high probability regret bound. We further consider a simpler \emph{fixed-gap} adversarial setup, which bridges between two extreme preference feedback models for dueling bandits: stationary preferences and an arbitrary sequence of preferences. For the fixed-gap adversarial setup we give an $\smash{ \tilde{O}((K/\Delta2)\log{T}) }$ regret algorithm, where $\Delta$ is the gap in Borda scores between the best item and all other items, and show a lower bound of $\Omega(K/\Delta2)$ indicating that our dependence on the main problem parameters $K$ and $\Delta$ is tight (up to logarithmic factors).

Citations (21)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.