Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

It's All in the Name: A Character Based Approach To Infer Religion (2010.14479v1)

Published 27 Oct 2020 in cs.CL, cs.AI, and cs.LG

Abstract: Demographic inference from text has received a surge of attention in the field of natural language processing in the last decade. In this paper, we use personal names to infer religion in South Asia - where religion is a salient social division, and yet, disaggregated data on it remains scarce. Existing work predicts religion using dictionary based method, and therefore, can not classify unseen names. We use character based models which learn character patterns and, therefore, can classify unseen names as well with high accuracy. These models are also much faster and can easily be scaled to large data sets. We improve our classifier by combining the name of an individual with that of their parent/spouse and achieve remarkably high accuracy. Finally, we trace the classification decisions of a convolutional neural network model using layer-wise relevance propagation which can explain the predictions of complex non-linear classifiers and circumvent their purported black box nature. We show how character patterns learned by the classifier are rooted in the linguistic origins of names.

Citations (20)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube