Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 116 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 59 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Fourth-Order Nonlocal Tensor Decomposition Model for Spectral Computed Tomography (2010.14361v1)

Published 27 Oct 2020 in physics.med-ph and cs.CV

Abstract: Spectral computed tomography (CT) can reconstruct spectral images from different energy bins using photon counting detectors (PCDs). However, due to the limited photons and counting rate in the corresponding spectral fraction, the reconstructed spectral images usually suffer from severe noise. In this paper, a fourth-order nonlocal tensor decomposition model for spectral CT image reconstruction (FONT-SIR) method is proposed. Similar patches are collected in both spatial and spectral dimensions simultaneously to form the basic tensor unit. Additionally, principal component analysis (PCA) is applied to extract latent features from the patches for a robust and efficient similarity measure. Then, low-rank and sparsity decomposition is performed on the produced fourth-order tensor unit, and the weighted nuclear norm and total variation (TV) norm are used to enforce the low-rank and sparsity constraints, respectively. The alternating direction method of multipliers (ADMM) is adopted to optimize the objective function. The experimental results with our proposed FONT-SIR demonstrates a superior qualitative and quantitative performance for both simulated and real data sets relative to several state-of-the-art methods, in terms of noise suppression and detail preservation.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.