Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Motion Compensated Whole-Heart Coronary Magnetic Resonance Angiography using Focused Navigation (fNAV) (2010.14206v1)

Published 27 Oct 2020 in eess.IV and physics.med-ph

Abstract: Background: RSN whole-heart CMRA is a technique that estimates and corrects for respiratory motion. However, RSN has been limited to a 1D rigid correction which is often insufficient for patients with complex respiratory patterns. The goal of this work is therefore to improve the robustness and quality of 3D radial CMRA by incorporating both 3D motion information and nonrigid intra-acquisition correction of the data into a framework called focused navigation (fNAV). Methods: We applied fNAV to 500 data sets from a numerical simulation, 22 healthy volunteers, and 549 cardiac patients. We compared fNAV to RSN and respiratory resolved XD-GRASP reconstructions of the same data and recorded reconstruction times. Motion accuracy was measured as the correlation between fNAV and ground truth for simulations, and fNAV and image registration for in vivo data. Vessel sharpness was measured using Soap-Bubble. Finally, image quality analysis was performed by a blinded expert reviewer who chose the best image for each data set. Results The reconstruction time for fNAV images was significantly higher than RSN (6.1 +/- 2.1 minutes vs 1.4 +/- 0.3, minutes, p<0.025) but significantly lower than XD-GRASP (25.6 +/- 7.1, minutes, p<0.025). There is high correlation between the fNAV, and reference displacement estimates across all data sets (0.73 +/- 0.29). For all data, fNAV lead to significantly sharper vessels than all other reconstructions (p < 0.01). Finally, a blinded reviewer chose fNAV as the best image in 239 out of 571 cases (p = 10-5). Conclusion: fNAV is a promising technique for improving free-breathing 3D radial whole-heart CMRA. This novel approach to respiratory self-navigation can derive 3D nonrigid motion estimations from an acquired 1D signal yielding statistically significant improvement in image sharpness relative to 1D translational correction as well as XD-GRASP reconstructions.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.