Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

The leapfrog algorithm as nonlinear Gauss-Seidel (2010.14137v3)

Published 27 Oct 2020 in math.NA and cs.NA

Abstract: Several applications in optimization, image, and signal processing deal with data that belong to the Stiefel manifold St(n,p), that is, the set of n-by-p matrices with orthonormal columns. Some applications, like the Riemannian center of mass, require evaluating the Riemannian distance between two arbitrary points on St(n,p). This can be done by explicitly constructing the geodesic connecting these two points. An existing method for finding geodesics is the leapfrog algorithm of J. L. Noakes. This algorithm is related to the Gauss-Seidel method, a classical iterative method for solving a linear system of equations that can be extended to nonlinear systems. We propose a convergence proof of leapfrog as a nonlinear Gauss-Seidel method. Our discussion is limited to the case of the Stiefel manifold, however, it may be generalized to other embedded submanifolds. We discuss other aspects of leapfrog and present some numerical experiments.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.