Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Deperturbation of Online Social Networks via Bayesian Label Transition (2010.14121v3)

Published 27 Oct 2020 in cs.LG, cs.SI, and physics.soc-ph

Abstract: Online social networks (OSNs) classify users into different categories based on their online activities and interests, a task which is referred as a node classification task. Such a task can be solved effectively using Graph Convolutional Networks (GCNs). However, a small number of users, so-called perturbators, may perform random activities on an OSN, which significantly deteriorate the performance of a GCN-based node classification task. Existing works in this direction defend GCNs either by adversarial training or by identifying the attacker nodes followed by their removal. However, both of these approaches require that the attack patterns or attacker nodes be identified first, which is difficult in the scenario when the number of perturbator nodes is very small. In this work, we develop a GCN defense model, namely GraphLT, which uses the concept of label transition. GraphLT assumes that perturbators' random activities deteriorate GCN's performance. To overcome this issue, GraphLT subsequently uses a novel Bayesian label transition model, which takes GCN's predicted labels and applies label transitions by Gibbs-sampling-based inference and thus repairs GCN's prediction to achieve better node classification. Extensive experiments on seven benchmark datasets show that GraphLT considerably enhances the performance of the node classifier in an unperturbed environment; furthermore, it validates that GraphLT can successfully repair a GCN-based node classifier with superior performance than several competing methods.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.