Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Effective FAQ Retrieval and Question Matching With Unsupervised Knowledge Injection (2010.14049v1)

Published 27 Oct 2020 in cs.AI and cs.IR

Abstract: Frequently asked question (FAQ) retrieval, with the purpose of providing information on frequent questions or concerns, has far-reaching applications in many areas, where a collection of question-answer (Q-A) pairs compiled a priori can be employed to retrieve an appropriate answer in response to a user\u2019s query that is likely to reoccur frequently. To this end, predominant approaches to FAQ retrieval typically rank question-answer pairs by considering either the similarity between the query and a question (q-Q), the relevance between the query and the associated answer of a question (q-A), or combining the clues gathered from the q-Q similarity measure and the q-A relevance measure. In this paper, we extend this line of research by combining the clues gathered from the q-Q similarity measure and the q-A relevance measure and meanwhile injecting extra word interaction information, distilled from a generic (open domain) knowledge base, into a contextual LLM for inferring the q-A relevance. Furthermore, we also explore to capitalize on domain-specific topically-relevant relations between words in an unsupervised manner, acting as a surrogate to the supervised domain-specific knowledge base information. As such, it enables the model to equip sentence representations with the knowledge about domain-specific and topically-relevant relations among words, thereby providing a better q-A relevance measure. We evaluate variants of our approach on a publicly-available Chinese FAQ dataset, and further apply and contextualize it to a large-scale question-matching task, which aims to search questions from a QA dataset that have a similar intent as an input query. Extensive experimental results on these two datasets confirm the promising performance of the proposed approach in relation to some state-of-the-art ones.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube