Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Interior Point Solving for LP-based prediction+optimisation (2010.13943v1)

Published 26 Oct 2020 in cs.NE, cs.AI, and math.OC

Abstract: Solving optimization problems is the key to decision making in many real-life analytics applications. However, the coefficients of the optimization problems are often uncertain and dependent on external factors, such as future demand or energy or stock prices. Machine learning (ML) models, especially neural networks, are increasingly being used to estimate these coefficients in a data-driven way. Hence, end-to-end predict-and-optimize approaches, which consider how effective the predicted values are to solve the optimization problem, have received increasing attention. In case of integer linear programming problems, a popular approach to overcome their non-differentiabilty is to add a quadratic penalty term to the continuous relaxation, such that results from differentiating over quadratic programs can be used. Instead we investigate the use of the more principled logarithmic barrier term, as widely used in interior point solvers for linear programming. Specifically, instead of differentiating the KKT conditions, we consider the homogeneous self-dual formulation of the LP and we show the relation between the interior point step direction and corresponding gradients needed for learning. Finally our empirical experiments demonstrate our approach performs as good as if not better than the state-of-the-art QPTL (Quadratic Programming task loss) formulation of Wilder et al. and SPO approach of Elmachtoub and Grigas.

Citations (91)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)