Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A novel variational form of the Schatten-$p$ quasi-norm (2010.13927v1)

Published 26 Oct 2020 in math.NA and cs.NA

Abstract: The Schatten-$p$ quasi-norm with $p\in(0,1)$ has recently gained considerable attention in various low-rank matrix estimation problems offering significant benefits over relevant convex heuristics such as the nuclear norm. However, due to the nonconvexity of the Schatten-$p$ quasi-norm, minimization suffers from two major drawbacks: 1) the lack of theoretical guarantees and 2) the high computational cost which is demanded for the minimization task even for trivial tasks such as finding stationary points. In an attempt to reduce the high computational cost induced by Schatten-$p$ quasi-norm minimization, variational forms, which are defined over smaller-size matrix factors whose product equals the original matrix, have been proposed. Here, we propose and analyze a novel variational form of Schatten-$p$ quasi-norm which, for the first time in the literature, is defined for any continuous value of $p\in(0,1]$ and decouples along the columns of the factorized matrices. The proposed form can be considered as the natural generalization of the well-known variational form of the nuclear norm to the nonconvex case i.e., for $p\in(0,1)$. The resulting formulation gives way to SVD-free algorithms thus offering lower computational complexity than the one that is induced by the original definition of the Schatten-$p$ quasi-norm. A local optimality analysis is provided which shows~that we can arrive at a local minimum of the original Schatten-$p$ quasi-norm problem by reaching a local minimum of the matrix factorization based surrogate problem. In addition, for the case of the squared Frobenius loss with linear operators obeying the restricted isometry property (RIP), a rank-one update scheme is proposed, which offers a way to escape poor local minima. Finally, the efficiency of our approach is empirically shown on a matrix completion problem.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.