Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Personalised Meta-path Generation for Heterogeneous GNNs (2010.13735v2)

Published 26 Oct 2020 in cs.LG

Abstract: Recently, increasing attention has been paid to heterogeneous graph representation learning (HGRL), which aims to embed rich structural and semantic information in heterogeneous information networks (HINs) into low-dimensional node representations. To date, most HGRL models rely on hand-crafted meta-paths. However, the dependency on manually-defined meta-paths requires domain knowledge, which is difficult to obtain for complex HINs. More importantly, the pre-defined or generated meta-paths of all existing HGRL methods attached to each node type or node pair cannot be personalised to each individual node. To fully unleash the power of HGRL, we present a novel framework, Personalised Meta-path based Heterogeneous Graph Neural Networks (PM-HGNN), to jointly generate meta-paths that are personalised for each individual node in a HIN and learn node representations for the target downstream task like node classification. Precisely, PM-HGNN treats the meta-path generation as a Markov Decision Process and utilises a policy network to adaptively generate a meta-path for each individual node and simultaneously learn effective node representations. The policy network is trained with deep reinforcement learning by exploiting the performance improvement on a downstream task. We further propose an extension, PM-HGNN++, to better encode relational structure and accelerate the training during the meta-path generation. Experimental results reveal that both PM-HGNN and PM-HGNN++ can significantly and consistently outperform 16 competing baselines and state-of-the-art methods in various settings of node classification. Qualitative analysis also shows that PM-HGNN++ can identify meaningful meta-paths overlooked by human knowledge.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.