Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Constraint Translation Candidates: A Bridge between Neural Query Translation and Cross-lingual Information Retrieval (2010.13658v1)

Published 26 Oct 2020 in cs.CL and cs.IR

Abstract: Query translation (QT) is a key component in cross-lingual information retrieval system (CLIR). With the help of deep learning, neural machine translation (NMT) has shown promising results on various tasks. However, NMT is generally trained with large-scale out-of-domain data rather than in-domain query translation pairs. Besides, the translation model lacks a mechanism at the inference time to guarantee the generated words to match the search index. The two shortages of QT result in readable texts for human but inadequate candidates for the downstream retrieval task. In this paper, we propose a novel approach to alleviate these problems by limiting the open target vocabulary search space of QT to a set of important words mined from search index database. The constraint translation candidates are employed at both of training and inference time, thus guiding the translation model to learn and generate well performing target queries. The proposed methods are exploited and examined in a real-word CLIR system--Aliexpress e-Commerce search engine. Experimental results demonstrate that our approach yields better performance on both translation quality and retrieval accuracy than the strong NMT baseline.

Citations (14)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.