Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Exploring Memory Access Patterns for Graph Processing Accelerators (2010.13619v3)

Published 26 Oct 2020 in cs.DB and cs.AR

Abstract: Recent trends in business and technology (e.g., machine learning, social network analysis) benefit from storing and processing growing amounts of graph-structured data in databases and data science platforms. FPGAs as accelerators for graph processing with a customizable memory hierarchy promise solving performance problems caused by inherent irregular memory access patterns on traditional hardware (e.g., CPU). However, developing such hardware accelerators is yet time-consuming and difficult and benchmarking is non-standardized, hindering comprehension of the impact of memory access pattern changes and systematic engineering of graph processing accelerators. In this work, we propose a simulation environment for the analysis of graph processing accelerators based on simulating their memory access patterns. Further, we evaluate our approach on two state-of-the-art FPGA graph processing accelerators and show reproducibility, comparablity, as well as the shortened development process by an example. Not implementing the cycle-accurate internal data flow on accelerator hardware like FPGAs significantly reduces the implementation time, increases the benchmark parameter transparency, and allows comparison of graph processing approaches.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.