Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

UPB at SemEval-2020 Task 12: Multilingual Offensive Language Detection on Social Media by Fine-tuning a Variety of BERT-based Models (2010.13609v2)

Published 26 Oct 2020 in cs.CL and cs.LG

Abstract: Offensive language detection is one of the most challenging problem in the natural language processing field, being imposed by the rising presence of this phenomenon in online social media. This paper describes our Transformer-based solutions for identifying offensive language on Twitter in five languages (i.e., English, Arabic, Danish, Greek, and Turkish), which was employed in Subtask A of the Offenseval 2020 shared task. Several neural architectures (i.e., BERT, mBERT, Roberta, XLM-Roberta, and ALBERT), pre-trained using both single-language and multilingual corpora, were fine-tuned and compared using multiple combinations of datasets. Finally, the highest-scoring models were used for our submissions in the competition, which ranked our team 21st of 85, 28th of 53, 19th of 39, 16th of 37, and 10th of 46 for English, Arabic, Danish, Greek, and Turkish, respectively.

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.