Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Interpreting convolutional networks trained on textual data (2010.13585v1)

Published 20 Oct 2020 in cs.CL, cs.AI, and cs.LG

Abstract: There have been many advances in the artificial intelligence field due to the emergence of deep learning. In almost all sub-fields, artificial neural networks have reached or exceeded human-level performance. However, most of the models are not interpretable. As a result, it is hard to trust their decisions, especially in life and death scenarios. In recent years, there has been a movement toward creating explainable artificial intelligence, but most work to date has concentrated on image processing models, as it is easier for humans to perceive visual patterns. There has been little work in other fields like natural language processing. In this paper, we train a convolutional model on textual data and analyze the global logic of the model by studying its filter values. In the end, we find the most important words in our corpus to our models logic and remove the rest (95%). New models trained on just the 5% most important words can achieve the same performance as the original model while reducing training time by more than half. Approaches such as this will help us to understand NLP models, explain their decisions according to their word choices, and improve them by finding blind spots and biases.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube