Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Lyapunov-Based Reinforcement Learning State Estimator (2010.13529v2)

Published 26 Oct 2020 in cs.LG, cs.RO, cs.SY, and eess.SY

Abstract: In this paper, we consider the state estimation problem for nonlinear stochastic discrete-time systems. We combine Lyapunov's method in control theory and deep reinforcement learning to design the state estimator. We theoretically prove the convergence of the bounded estimate error solely using the data simulated from the model. An actor-critic reinforcement learning algorithm is proposed to learn the state estimator approximated by a deep neural network. The convergence of the algorithm is analysed. The proposed Lyapunov-based reinforcement learning state estimator is compared with a number of existing nonlinear filtering methods through Monte Carlo simulations, showing its advantage in terms of estimate convergence even under some system uncertainties such as covariance shift in system noise and randomly missing measurements. To the best of our knowledge, this is the first reinforcement learning based nonlinear state estimator with bounded estimate error performance guarantee.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.