Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Robust Bayesian Inference for Discrete Outcomes with the Total Variation Distance (2010.13456v1)

Published 26 Oct 2020 in stat.ME, cs.LG, and stat.ML

Abstract: Models of discrete-valued outcomes are easily misspecified if the data exhibit zero-inflation, overdispersion or contamination. Without additional knowledge about the existence and nature of this misspecification, model inference and prediction are adversely affected. Here, we introduce a robust discrepancy-based Bayesian approach using the Total Variation Distance (TVD). In the process, we address and resolve two challenges: First, we study convergence and robustness properties of a computationally efficient estimator for the TVD between a parametric model and the data-generating mechanism. Second, we provide an efficient inference method adapted from Lyddon et al. (2019) which corresponds to formulating an uninformative nonparametric prior directly over the data-generating mechanism. Lastly, we empirically demonstrate that our approach is robust and significantly improves predictive performance on a range of simulated and real world data.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.