Papers
Topics
Authors
Recent
2000 character limit reached

Robust Bayesian Inference for Discrete Outcomes with the Total Variation Distance (2010.13456v1)

Published 26 Oct 2020 in stat.ME, cs.LG, and stat.ML

Abstract: Models of discrete-valued outcomes are easily misspecified if the data exhibit zero-inflation, overdispersion or contamination. Without additional knowledge about the existence and nature of this misspecification, model inference and prediction are adversely affected. Here, we introduce a robust discrepancy-based Bayesian approach using the Total Variation Distance (TVD). In the process, we address and resolve two challenges: First, we study convergence and robustness properties of a computationally efficient estimator for the TVD between a parametric model and the data-generating mechanism. Second, we provide an efficient inference method adapted from Lyddon et al. (2019) which corresponds to formulating an uninformative nonparametric prior directly over the data-generating mechanism. Lastly, we empirically demonstrate that our approach is robust and significantly improves predictive performance on a range of simulated and real world data.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.