Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Multi-object tracking with self-supervised associating network (2010.13424v1)

Published 26 Oct 2020 in cs.CV

Abstract: Multi-Object Tracking (MOT) is the task that has a lot of potential for development, and there are still many problems to be solved. In the traditional tracking by detection paradigm, There has been a lot of work on feature based object re-identification methods. However, this method has a lack of training data problem. For labeling multi-object tracking dataset, every detection in a video sequence need its location and IDs. Since assigning consecutive IDs to each detection in every sequence is a very labor-intensive task, current multi-object tracking dataset is not sufficient enough to train re-identification network. So in this paper, we propose a novel self-supervised learning method using a lot of short videos which has no human labeling, and improve the tracking performance through the re-identification network trained in the self-supervised manner to solve the lack of training data problem. Despite the re-identification network is trained in a self-supervised manner, it achieves the state-of-the-art performance of MOTA 62.0\% and IDF1 62.6\% on the MOT17 test benchmark. Furthermore, the performance is improved as much as learned with a large amount of data, it shows the potential of self-supervised method.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.