Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Improved Mask-CTC for Non-Autoregressive End-to-End ASR (2010.13270v2)

Published 26 Oct 2020 in eess.AS, cs.CL, and cs.SD

Abstract: For real-world deployment of automatic speech recognition (ASR), the system is desired to be capable of fast inference while relieving the requirement of computational resources. The recently proposed end-to-end ASR system based on mask-predict with connectionist temporal classification (CTC), Mask-CTC, fulfills this demand by generating tokens in a non-autoregressive fashion. While Mask-CTC achieves remarkably fast inference speed, its recognition performance falls behind that of conventional autoregressive (AR) systems. To boost the performance of Mask-CTC, we first propose to enhance the encoder network architecture by employing a recently proposed architecture called Conformer. Next, we propose new training and decoding methods by introducing auxiliary objective to predict the length of a partial target sequence, which allows the model to delete or insert tokens during inference. Experimental results on different ASR tasks show that the proposed approaches improve Mask-CTC significantly, outperforming a standard CTC model (15.5% $\rightarrow$ 9.1% WER on WSJ). Moreover, Mask-CTC now achieves competitive results to AR models with no degradation of inference speed ($<$ 0.1 RTF using CPU). We also show a potential application of Mask-CTC to end-to-end speech translation.

Citations (56)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.