Improved Mask-CTC for Non-Autoregressive End-to-End ASR (2010.13270v2)
Abstract: For real-world deployment of automatic speech recognition (ASR), the system is desired to be capable of fast inference while relieving the requirement of computational resources. The recently proposed end-to-end ASR system based on mask-predict with connectionist temporal classification (CTC), Mask-CTC, fulfills this demand by generating tokens in a non-autoregressive fashion. While Mask-CTC achieves remarkably fast inference speed, its recognition performance falls behind that of conventional autoregressive (AR) systems. To boost the performance of Mask-CTC, we first propose to enhance the encoder network architecture by employing a recently proposed architecture called Conformer. Next, we propose new training and decoding methods by introducing auxiliary objective to predict the length of a partial target sequence, which allows the model to delete or insert tokens during inference. Experimental results on different ASR tasks show that the proposed approaches improve Mask-CTC significantly, outperforming a standard CTC model (15.5% $\rightarrow$ 9.1% WER on WSJ). Moreover, Mask-CTC now achieves competitive results to AR models with no degradation of inference speed ($<$ 0.1 RTF using CPU). We also show a potential application of Mask-CTC to end-to-end speech translation.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.